Biphasic elevation of [Ca(2+)](i) in individual human spermatozoa exposed to progesterone.
نویسندگان
چکیده
Fluorimetric studies on progesterone-induced [Ca(2+)](i) signalling in mammalian spermatozoa show both the well-characterised [Ca(2+)](i) transient and a subsequent sustained phase. However, the sustained phase is thought to reflect release of the fluorochrome during the acrosome reaction and has not been subject to critical investigation. We have used single-cell imaging of [Ca(2+)](i) to analyse the progesterone-induced [Ca(2+)](i) response in large numbers (>2000) of capacitated, human spermatozoa. In 70% of cells, treatment with progesterone induced a transient increase, which typically peaked within 1 min and decayed with a similar time course. Upon rapid application of progesterone this response peaked within 5-20 s. In 35% of progesterone-treated spermatozoa a sustained elevation of [Ca(2+)](i) occurred, which became discernible during the falling phase of the transient response and persisted for at least 20 min. Both [Ca(2+)](i) responses were localised to the postacrosomal region. Averaging of large numbers of single cell responses generated traces similar to those seen in fluorimetric studies. Although the sustained response was strongly associated with the initial, transient response, a few spermatozoa generated sustained responses that were not preceded by a significant transient response (5% of cells). It is concluded that a genuine biphasic [Ca(2+)](i) signal is activated by progesterone and that the sustained response is a discrete signalling event with biological significance.
منابع مشابه
Secretory pathway Ca(2+)-ATPase (SPCA1) Ca(2)+ pumps, not SERCAs, regulate complex [Ca(2+)](i) signals in human spermatozoa.
The sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitors thapsigargin (0.1-1 microM) and cyclopiazonic acid (10 microM), failed to affect resting [Ca(2+)] in human spermatozoa. Slow progesterone-induced [Ca(2+ i)](i) oscillations in human spermatozoa, which involve cyclic emptying-refilling of an intracellular Ca(2+) store were also insensitive to these inhibitors. Non-selective ...
متن کاملEncoding of progesterone stimulus intensity by intracellular [Ca2+] ([Ca2+]i) in human spermatozoa.
Progesterone induces a biphasic Ca(2+) influx and consequent acrosome reaction in human spermatozoa. We have used two procedures to vary the stimulus (dosage and prior receptor desensitization) to investigate the encoding of stimulus strength by intracellular [Ca(2+)] ([Ca(2+)](i)). Acrosome reaction and amplitude (but not kinetics) of the transient [Ca(2+)](i) response (population measurement)...
متن کاملDisruption of the principal, progesterone-activated sperm Ca2+ channel in a CatSper2-deficient infertile patient.
The female steroid hormone progesterone regulates ovulation and supports pregnancy, but also controls human sperm function within the female reproductive tract. Progesterone causes elevation of sperm intracellular Ca(2+) leading to sperm hyperactivation, acrosome reaction, and perhaps chemotaxis toward the egg. Although it has been suggested that progesterone-dependent Ca(2+) influx into human ...
متن کاملO-31: Mifepristone Acts as Progesterone Antagonistof Non-Genomic Responses but InhibitsPhytohemagglutinin Induced Proliferationin Human T Cells
Background: Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca2+] i) and decreased intracellular pH (pHi). Mifepristoneimmune cells compared with progeste...
متن کاملSlo1 is the principal potassium channel of human spermatozoa
Mammalian spermatozoa gain competence to fertilize an oocyte as they travel through the female reproductive tract. This process is accompanied by an elevation of sperm intracellular calcium and a membrane hyperpolarization. The latter is evoked by K(+) efflux; however, the molecular identity of the potassium channel of human spermatozoa (hKSper) is unknown. Here, we characterize hKSper, reporti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 222 2 شماره
صفحات -
تاریخ انتشار 2000